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Density dependence plays an important role in population regu-
lation and is known to generate temporal fluctuations in popu-
lation density. However, the ways in which density dependence
affects spatial population processes, such as species invasions,
are less understood. Although classical ecological theory suggests
that invasions should advance at a constant speed, empirical work
is illuminating the highly variable nature of biological invasions,
which often exhibit nonconstant spreading speeds, even in sim-
ple, controlled settings. Here, we explore endogenous density
dependence as a mechanism for inducing variability in biologi-
cal invasions with a set of population models that incorporate
density dependence in demographic and dispersal parameters.
We show that density dependence in demography at low popula-
tion densities—i.e., an Allee effect—combined with spatiotempo-
ral variability in population density behind the invasion front can
produce fluctuations in spreading speed. The density fluctuations
behind the front can arise from either overcompensatory popu-
lation growth or density-dependent dispersal, both of which are
common in nature. Our results show that simple rules can gener-
ate complex spread dynamics and highlight a source of variability
in biological invasions that may aid in ecological forecasting.

Allee effects | biological invasion | density-dependent dispersal |
integrodifference equations | invasive species

F luctuations in population size have long fascinated ecologists
and fueled a now-classic debate over whether populations

are governed by extrinsic environmental factors or intrinsic self-
limitation (1). One of the most important advances of 20th cen-
tury ecology was the discovery that intrinsic density feedbacks
can cause population densities to fluctuate, even in constant envi-
ronments (2–4). This discovery helped resolve the important role
of density dependence in population regulation, revealing that
strong regulating forces can generate dynamics superficially con-
sistent with no regulation at all. Our understanding of tempo-
ral fluctuations in population size stands in sharp contrast with
our relatively poor understanding of fluctuations in the spatial
dimension of population growth: spread across landscapes.

Understanding the dynamics of population spread takes on
urgency in the current era of human-mediated biological inva-
sions and range shifts in response to climate change. The veloc-
ity of spread or “invasion speed” is a key summary statistic of an
expanding population and an important tool for ecological fore-
casting (5). Estimates of invasion speed are often derived from
regression methods that describe change in spatial extent with
respect to time (6–8). Implicit in this approach is the assump-
tion that the true spreading speed is constant and that deviations
from it represent “error” in the underlying process or human
observation of the process. This assumption is reinforced by long-
standing theoretical predictions that, under a wide range of con-
ditions, a population will asymptotically spread with a constant
velocity. Invasion at a constant speed can arise from both pulled
waves [where the advancing wave moves forward by dispersal
and rapid growth of low-density populations far in front of the
advancing wave (9–12)] and pushed waves [where the invasion

is driven by reproduction and dispersal from high-density pop-
ulations behind the invasion front (13–15)]. The conventional
wisdom of a long-term constant invasion speed is widely applied
(16, 17).

In contrast to classic approaches that emphasize a long-term
constant speed, there is growing empirical recognition that inva-
sion dynamics can be highly variable and idiosyncratic (18–25).
There are several theoretical explanations for fluctuations in
invasion speed (which we define here as any persistent tem-
poral variability in spreading speed), including stochasticity in
either demography or dispersal (24–28) and temporal or spatial
environmental heterogeneity (29–34). Indeed, empirical stud-
ies often attribute temporal variation in speed to differences in
the environments encountered by the invading population (7,
35). Predator–prey dynamics can also induce fluctuating invasion
speeds (30, 36). Notably, Dwyer and Morris (36) showed that
density feedbacks can produce fluctuations in spreading speed,
but we still have an incomplete understanding of the conditions
under which fluctuations in speed arise. Surprisingly, few theo-
retical studies have since investigated these density feedbacks,
especially with respect to their effect on endogenously driven
speed fluctuations, despite recent empirical work on invasion
variability (16, 20–22).

Here, we develop deterministic, single-species mathematical
models of spatial spread to ask under what conditions the inva-
sion speed of an expanding population can fluctuate in a spa-
tially uniform and temporally constant environment. As a start-
ing point, we took inspiration from the relatively complete
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understanding of fluctuations in population size generated by
density dependence in nonspatial models (4). We conjectured
that density-dependent feedbacks might similarly generate fluc-
tuating invasion speeds pursuing the suggestion first made in ref.
36. Because spread dynamics are jointly governed by demog-
raphy (local births and deaths) and dispersal (spatial redistri-
bution), we considered several types of density feedbacks (37),
including positive density dependence in population growth (i.e.,
Allee effects) at the low-density invasion front (38) and density-
dependent movement (36, 39).

Our analysis uncovered density-dependent mechanisms that
can induce variability in invasion speed, with fluctuations rang-
ing from stable two-point cycles to more complicated aperiodic
dynamics. By showing that simple invasion models can gener-
ate complex spread dynamics, our results reveal previously unde-
scribed sources of variability in biological invasions and provide
a roadmap for empirical studies to detect these processes in
nature.

Models and Results
We use integrodifference equations (11) to model population
growth and spread. These models describe the change in pop-
ulation density [nt(x )] from time t to time t +1 as the result of
demography and dispersal. First, individuals at location y gen-

Fig. 1. Invasion dynamics under different types of density dependence and dispersal. (A) With compensatory growth at high densities, the wave shape and
invasion speed are both constant, which is true with and without low-density Allee effects (AE) (overcompensatory model: σ2 = 0.25, a = 0, and r = 0.9)
(SI Appendix, Fig. S1A). (B) With overcompensatory population growth and no Allee effect, population density exhibits fluctuations behind the front,
but the leading edge progresses at a constant speed (overcompensatory model: σ2 = 0.25, a = 0, and r = 2.7) (SI Appendix, Fig. S1A). (C) However, when
overcompensation combines with low-density Allee effects, the invasion speed fluctuates (overcompensatory model: σ2 = 0.25, a = 0.4, and r = 2.7) (SI
Appendix, Fig. S1A). Variability in invasion speed can also occur when Allee effects combine with density dependence in (D) the proportion of dispersing
offspring (SI Appendix, Fig. S1 B and C) (propensity model: a = 0.2, λ= 0, n̂ = 0.9, p0 = 0.05, pmax = 1, and α= 50) or (E and F) dispersal distance (SI
Appendix, Fig. S1 B and D). In the latter model, dispersal distance (E) decreases with population density (distance model: a = 0.2, λ= 0, n̂ = 0.9, β=−50,
σ2

0 = 0.05, and σ2
max = 1) or (F) increases with density (distance model: parameters as in E except β= 50). Initial population densities are either (A–C) 2 or

(D–F) 0.8 times the standard normal probability density truncated at |x|= 5.

erate f (nt(y)) offspring and then die. Second, a fraction p of
these offspring disperse. The probability that a dispersing indi-
vidual moves from location y to location x is given by the disper-
sal kernel, k(x − y). The remaining fraction (1− p) remains at
their natal location. Concatenating reproduction and dispersal,
we have (40–43)

nt+1(x ) = (1− p)f
(
nt(x )

)
+

∞∫
−∞

p k(x − y)f
(
nt(y)

)
dy . [1]

We will assume that f (1)= 1, so that the population has an equi-
librium at the carrying capacity nt(x )= 1, and that the tails of
the dispersal kernel k are thin (i.e., go to zero at least exponen-
tially fast), so that the probability that an individual disperses an
extremely large distance is exceedingly small.

In general, both the dispersing fraction p and the dispersal ker-
nel k may depend on the population density at the natal location
as does the reproduction function f . The way that the functions
f , p, and k depend on population density determine the dynam-
ics of Eq. 1. In the simplest case, the reproduction function f
is strictly compensatory: that is, f is an increasing but deceler-
ating function of density [f ′(n)> 0 and f ′′(n)< 0]. For strictly
compensatory models, the population will spread at a constant
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asymptotic speed (Fig. 1A) if three conditions hold: small popu-
lations grow [f ′(0)> 1], all individuals disperse (P =1), and dis-
persal distance is independent of population density. Here, the
speed is determined by the growth and spread of the low-density
populations far ahead of the main invasion front (9); the dynam-
ics at high densities do not matter—the hallmark of a pulled
invasion.

Constant asymptotic invasion speeds are not, however, lim-
ited to the simple case just described. In the absence of Allee
effects, they can also occur if the reproduction function produces
overcompensation—declining offspring production with increas-
ing population density [so that f ′(1)< 0]. As with classic nonspa-
tial models, overcompensation produces oscillations in popula-
tion density (2–4), which in turn, cause dynamic changes in the
shape of the wave behind the invasion front. Despite these com-
plex fluctuations at high population densities, the invasion speeds
of overcompensatory models (without Allee effects) remain con-
stant (Fig. 1B) and are still determined by the dynamics at low
densities (44).

Long-standing theory suggests that invaders subject to Allee
effects at low population density and compensatory dynamics at
larger population density will also eventually spread at a con-
stant speed if their initial population sizes are sufficiently large
and the Allee effect is not too strong (13, 14). Allee effects cause
invasion waves to be pushed from behind their leading edge (11,
14). When Allee effects are sufficiently strong, the invasion speed
no longer depends on the pull of populations at low densities
in front of the wave but rather, depends on the strength of the
push from the high-density populations behind it. In our mod-
els, we show that, when low-density Allee effects combine with
spatiotemporal population density fluctuations (created through
overcompensation or density-dependent dispersal), the invasion
speed may not be constant asymptotically as expected under clas-
sic invasion theory but may rather exhibit persistent fluctuations
(Fig. 1 C–F).

Allee Effects and Overcompensation. First, we investigated whether
combining an Allee effect with overcompensation at high pop-
ulation density could induce fluctuating invasion speeds when
dispersal is density-independent and all offspring disperse (i.e.,
P =1). This model (the “overcompensatory model”) (Materi-
als and Methods and SI Appendix, Fig. S1A) has two important
parameters: r , which affects both the growth rate at low den-
sity and the strength of density dependence at carrying capacity,
and a , the Allee threshold. We assume that, when the population
density falls below a , no offspring are produced there (a strong
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Fig. 2. Amplitude of fluctuations in invasion speed normalized by the mean speed for populations with Allee effects and (A) overcompensatory growth,
(B) density-dependent dispersal propensity, and (C) density-dependent dispersal distance. Darker colors (blue) indicate where fluctuations create large
differences from the mean invasion speed. Values of zero (yellow) indicate invasion waves that move at a constant speed. White regions indicate where
invasions fail. Parameter values: (A and B) σ2 = 0.25; (B and C) a = 0.2 and n̂ = 0.9; (B) p0 = 0.05 and pmax = 1; (C) σ2

0 = 0.05 and σ2
max = 1. Initial population

densities are equivalent to those in Fig. 1.

Allee effect). If the population density falls below a everywhere,
the population is doomed to extinction.

Simulations (described in Materials and Methods) revealed that
this model generates variable speed invasions (Fig. 1C), but only
when the low-density Allee threshold is of intermediate value
and high-density overcompensation is strong (r > 2) (Fig. 2A).
For r > 2, the local equilibrium density nt(x )= 1 is unstable,
leading to sustained fluctuations in local density. Our simulations
suggest that r > 2 is a necessary condition for fluctuating invasion
speeds in the overcompensatory model. If the Allee threshold
(a) is too large, the spreading population eventually falls below
the threshold everywhere and is extirpated. If a is sufficiently
small, the invasion proceeds with an apparently constant speed
(Fig. 2A).

These fluctuations are induced by the combination of a strong
Allee effect, which produces a pushed wave, and strong overcom-
pensation, which produces large spatiotemporal variation in den-
sity behind the invasion front and thus, variation in the strength
of the push (Fig. 3). When the population density at any loca-
tion is smaller than the Allee threshold (a), such as at the lead-
ing edge of the wave, the population vanishes before the next
time step. Populations just above a become large after reproduc-
tion, but as the population size increases beyond a , the offspring
population size f (n(x )) declines as a result of overcompensation
(SI Appendix, Fig. S1A). Therefore, when reproduction occurs
[transition between n(x ) and f (n(x ))] (Fig. 3, black vs. blue),
populations with the highest density become populations of low
density, and populations with density just above a become high
density. Through time, these transitions creates variability in the
size of the push by varying the size of the region contributing to
the wave front, leading to fluctuating invasion speeds (Fig. 3D
and SI Appendix, Fig. S2 A–F). The speed fluctuations can be
periodic or more complex (SI Appendix, Fig. S3). They vary in
amplitude by as much as 100% of the mean speed, with some
parameter combinations reaching amplitudes of ∼400% of the
mean speed (Fig. 2A).

This mechanism for variable speed invasion does not depend
on the discreteness of time. We developed a continuous time ver-
sion of the overcompensatory model, where we find fluctuating
invasion speeds as long as density fluctuations behind the wave
front combine with strong low-density Allee effects (SI Appendix,
Figs. S4–S6).

Allee Effects and Density-Dependent Dispersal. Overcompensation
is not the only mechanism that can generate the spatiotempo-
ral variability in population density that is necessary to produce
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Fig. 3. Population density before [n(x); black curves] and after [f(n(x)); blue
curves] growth (overcompensatory model with Allee effects) (Eq. 3) at (A–
C) sequential time steps. Gray regions represent locations that go extinct
because of Allee effects [light gray; n(x)< a)], and the solid points show
the edges of the wave. (D) The wave speed over time corresponds to A–C.
Parameter values include r = 2.2, a = 0.4, and σ2 = 0.25.

fluctuating invasion speeds when combined with Allee effects.
Density-dependent dispersal, manifest either as density depen-
dence in the propensity to disperse (p) or in the shape of the
dispersal kernel (k), can generate this high-density variability in
the pushing force as well. We show this result with two mod-
els (the “propensity model” and the “distance model,” respec-
tively) (Materials and Methods), both built on a piecewise linear
growth function that is compensatory at high population den-
sity (SI Appendix, Fig. S1B). We continue to include low-density
Allee effects. When the population size falls below the thresh-

old density a , individuals produce offspring at the constant per
capita rate λ. Alternatively, if the population size exceeds a , the
population goes to carrying capacity.

In the propensity model, population density influences the
propensity to disperse (p). In particular, we assume that the pro-
portion of offspring that disperse is given by a logistic function
of local population density [nt(x )] (Eq. 5) with four parameters:
the minimum (p0) and maximum (pmax) dispersal proportions;
a location parameter n̂ , which is the density at which the dis-
persal propensity is halfway between p0 and pmax; and a shape
parameter α. The sign of α determines if the proportion dis-
persing increases (α> 0) or decreases (α< 0) with density (SI
Appendix, Fig. S1C). The larger the magnitude of α, the steeper
the density response, which is centered around n̂ .

The propensity model can also generate invasions that spread
at fluctuating speeds (Fig. 1D and SI Appendix, Fig. S7). We
found that these fluctuations persist only when Allee effects are
strong (0 ≤ λ< 1), that dispersal propensity increases with pop-
ulation density (α> 0), and that the dispersal response occurs
at a population density that is larger than the Allee thresh-
old (n̂ > a). Fluctuations in speed are nearly always periodic
(SI Appendix, Figs. S7C and S8 A–D) and of large amplitude,
altering the invasion speed by ∼100–750% relative to the mean
speed (Fig. 2B). These large amplitude periodic fluctuations
often include positive and negative speeds, meaning that inva-
sions alternate between steps forward and smaller steps back-
ward (Fig. 1D).

As before, spreading speed fluctuations are created through
variations in the dispersing population that pushes the invasion
forward from behind the front (Fig. 1D). The magnitude of the
push depends on the width of the region contributing dispers-
ing individuals and the proximity of this region to the front (SI
Appendix, Fig. S2 G–L). When density dependence in dispersal
is strong and positive (large α), the population directly adjacent
to the front is below the Allee effect threshold (a) and therefore,
decays to zero (SI Appendix, Fig. S2 G and H). Farther behind
the front, density is above a but below the dispersal midpoint
(n̂); thus, this region of the population reproduces but does not
disperse (SI Appendix, Fig. S2 H and I). This action results in a
large push from behind the wave front that moves the invasion
forward at the next time step when the nondispersing population
eventually disperses (SI Appendix, Fig. S2 I–K). Subsequently,
the region of the nondispersing population is much smaller and
farther from the invasion front at the next time step, resulting in
a much smaller push (SI Appendix, Fig. S2K).

With the distance model, we explore a second type of density-
dependent dispersal, where density alters the dispersal distance.
Here, all offspring disperse (P = 1), but density alters the vari-
ance (σ2) of the dispersal kernel (Eq. 6). Four parameters con-
trol this dependence: σ2

0 and σ2
max, which are the lower and

upper bounds of the variance; the location parameter n̂ , which is
the density at which dispersal variance is halfway between σ2

0 and
σ2
max; and a shape parameter β. The dispersal variance increases

with population density when β is positive and decreases with
density when β is negative. The larger the absolute value of β,
the sharper the response (SI Appendix, Fig. S1D).

The distance model also produces the necessary spatiotem-
poral variability in population density behind the invasion front
to induce fluctuating invasion speeds (Fig. 1 E and F and SI
Appendix, Fig. S7). As in the propensity model, the invasion
speed only fluctuates when Allee effects are strong (0≤λ≤ 1).
However, unlike the propensity model, we find that persistent
fluctuations are possible when density-dependent dispersal is
both positive (β > 0) and negative (β < 0) (Fig. 2C). The speed
fluctuations are more frequently aperiodic (SI Appendix, Fig.
S8 E–H) than the two-cycle fluctuations seen in the propen-
sity model, with the largest amplitude when dispersal distance
increases with density (β > 0) (Fig. 2C and SI Appendix, Fig.
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S7F). In general, fluctuations are larger as both Allee effects and
density-dependent dispersal are stronger and alter the invasion
speed by ∼5–100% (β > 0) and ∼1–9% (β < 0) relative to the
mean speed (Fig. 2C and SI Appendix, Fig. S7F).

When the dispersal distance exhibits strong positive density
dependence (SI Appendix, Fig. S2 M–R), populations at densities
above the dispersal threshold disperse long distances, and those
below disperse short distances. In this model, each push forward
is made up of a combination of both short- and long-distance
dispersers. The size of this push changes depending on the pro-
portion of the push made up of each type of disperser, which
is temporally variable, creating fluctuating invasion speeds. A
similar mechanism operates when β < 0 (SI Appendix, Fig. S2
S–X); however, instead, high-density populations disperse short
distances and vice versa.

Discussion
Our work provides insight into mechanisms behind invasion vari-
ability: fluctuations in invasion speed can occur solely because of
endogenous density dependence. In the models that we exam-
ine, both a strong low-density Allee effect [creating a pushed
wave (17, 45)] and large variations in population density behind
the invasion front are necessary to create fluctuating invasion
speeds. We show that the necessary spatiotemporal variability
can be generated via two types of density feedbacks: overcom-
pensatory density dependence or density-dependent dispersal.
When combined with Allee effects, either of these factors can
cause the strength of the invasion push from high-density popu-
lations to vary, leading to varying spreading speeds. The potential
for deterministic, density-dependent processes to generate com-
plex fluctuations in local population density is a canonical result
of theoretical population biology (1–4) and has proven influen-
tial in basic and applied empirical settings (46). By considering
the spatial dimension of population growth, which is increasingly
relevant in the context of global change, our results flesh out
understanding of complex population dynamics arising from
endogenous mechanisms. We conjecture that there is some gen-
erality to this mechanism, because we also see fluctuating speeds
in continuous time (SI Appendix, Fig. S4), although we recognize
that fluctuations can occur through other means (25, 30, 36). Our
results are potentially consistent with the highly variable spread-
ing speeds seen in empirical invasion studies (20–25).

Processes capable of generating fluctuations in population
density that create the variable pushing force behind the inva-
sion vanguard are common in nature. First, many invasive species
show the combination of high intrinsic growth rates and con-
specific interference at high density that gives rise to over-
compensatory population fluctuations (46, 47). Second, density-
dependent dispersal as a distinct source of spatiotemporal
density fluctuations can arise, even with strictly compensatory
density dependence in population growth. We found fluctuat-
ing invasion speeds with positive density-dependent dispersal
propensity, which is common in organisms with environmentally
inducible dispersal polymorphisms, including many insects. For
example, wingless aphids (48, 49) and plant hoppers (50) can
produce winged morphs when densities become high. When den-
sity dependence alters dispersal distance, fluctuations in speed
were seen under both positive and negative density dependence.
Mobile organisms can increase their dispersal distance with
increasing density by altering behavioral responses (39). Alterna-
tively, dispersal distances can decrease with density when crowd-
ing decreases reproductive and dispersal ability (39, 51, 52) or
in animals (notably small mammals) with strong group behavior
(39, 53, 54).

Allee effects, a common density-dependent process (55, 56),
influence small populations by decreasing low-density vital rates
[e.g., reproduction (40)]. We find in all of our models that Allee
effects and the pushed invasions that they generate are a nec-

essary ingredient of fluctuating speeds. Interestingly, this result
contrasts with that of Dwyer and Morris (36). Working with a
two-species model, they found that fluctuating speeds can occur
when predator dispersal distance depends on prey density (a
type of density-dependent movement) but without an explicit
Allee effect. We conjecture that predator–prey dynamics in their
model may, in fact, give rise to an implicit Allee effect, which
is known to occur in other predator–prey models (30). Biolog-
ically, density-dependent movement can contribute to an Allee
effect by reducing mate-finding abilities at low densities, espe-
cially when the movement is sex biased (16, 57). In this way, the
study by Dwyer and Morris (36), although superficially inconsis-
tent with our study, may nonetheless satisfy the conditions that
we identify as necessary for variable invasions.

Thoroughly accounting for the sources of variability in the
speed of biological invasions may improve invasion forecasting.
Our work suggests that intrinsic density dependence can cre-
ate complex invasion dynamics, consistent with the highly vari-
able spreading speeds seen in empirical invasion studies (20–25).
However, they remain open questions of whether and how often
these processes affect the ecological dynamics of spread given
the pervasive influences of environmental heterogeneity (29–34)
and demographic stochasticity (26–28) and their roles in inva-
sion variability. To begin to answer this question, we suggest cou-
pling models and empirical data, which has proven to be a fruit-
ful approach to understanding the intrinsic mechanisms behind
fluctuations in local population density (3, 4). Collecting long-
term data can be difficult, but some patterns might be straightfor-
ward to identify from existing datasets. In particular, the strong
two-cycle speed fluctuations generated when invaders experi-
ence both Allee effects and density-dependent dispersal propen-
sity would likely be detectable in data. Few empirical studies
have tested for endogenous mechanisms of fluctuating invasion
speeds, including studies for which variability in speed was an
explicit focus (16, 18–21, 25). Thus, signatures of endogenous
variability may be embedded in existing data, and we encourage
empiricists to reexamine variable invasion data in the context of
these density-dependent mechanisms.

Materials and Methods
The models that we studied are each a special case of Eq. 1. They all use the
Laplace dispersal kernel with variance σ2:

k(x − y; σ2) =
1
√

2σ2
exp

−
√

2(x − y)2

σ2

. [2]

Qualitative results are robust to kernel choice (i.e., normal or Cauchy).

Overcompensatory Model. We combine low-density Allee effects with the
possibility of overcompensation at high density (SI Appendix, Fig. S1A):

f(n) =

n exp(r(1− n)) for n> a,

0 for n ≤ a.
[3]

Dispersal is independent of density in this model [σ2(n) = σ2, a constant],
and all offspring disperse (P = 1).

Propensity Model. Here, we used a linear constant model for growth:

f(n) =

λn for n< a

1 for n ≥ a,
[4]

where 0≤ a< 1 (SI Appendix, Fig. S1B). Dispersal propensity depends on the
population density [nt(x)] via a logistic form similar to other models with
density-dependent dispersal (SI Appendix, Fig. S1C) (58):

p(n) = p0 +

{
pmax − p0

1 + exp [− α(n− n̂)]

}
. [5]

As in the overcompensatory model, the distance moved by dispersing indi-
viduals is independent of density [σ2(n) = σ2, a constant].
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Distance Model. For this model, we use the reproduction function (Eq. 4) but
assume that all offspring disperse (P = 1) after a dispersal distribution with
variance that is a logistic function of parental density [nt(x)] (SI Appendix,
Fig. S1D); that is,

σ
2(n) = σ

2
0 +

{
σ2

max − σ
2
0

1 + exp [− β(n− n̂)]

}
. [6]

We simulated each model for 200 iterations across a domain of length of
1,200 with 216 + 1 spatial nodes. Within each simulation, we defined the
location of the invasion front at each time step as the location where the
density of the invasion wave first exceeded a density threshold of 0.05. We
then used this location to calculate (i) the instantaneous invasion speed
(i.e., the distance traveled by the front between consecutive time steps),
(ii) the mean invasion speed averaged over the last 50 time steps, and (iii)
the amplitude of invasion speed fluctuations (the difference between the
maximum and minimum speeds over the last 20 time steps). SI Appendix,

Table S1 has a list of parameters and definitions. Code to run these mod-
els and recreate all figures is available from the Dryad Digital Repository:
dx.doi.org/10.5061/dryad.69sq3.
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